TRS Implementation of the DAQ Offline Interface.

The Offlineinterface to DAQ is specified in the StDagL ib documentation provided by Jeff Landgraf and
Michea LeVine ($STAR/ St Root / St DaqLi b/ doc/ O f 1 i nel nterface. pdf). Thisprovidesa
mechanism to access TPC datain a uniform manner independent of the dataformat utilized. Similar
interface mechanisms are envisioned for the other detectors. We discuss here the specific way to accessthe
simulated events processed through the Tpc Response Simulator (TRS).

Defining the event

There is one main difference between DAQ and the TRS implementation. The way to define the event in
the case of the simulation is done through StTrsMaker itself, so thereis no need for an EventReader object.
StTrsMaker |oads the event in one of two ways:

Full simulation of an input GEANT datafile.
Reading of a.trsfilefrom a previous simulation.

The switching to handle either caseis done at the macro level. Thisis done by instantiating the appropriate
makers in the chain and defining their behavior using the methods of those makers. Thetwo casesare
discussed below.

Inthefirst case, the chain that is set up in the macro would need to have an St_geant_ Maker and the
appropriate input .fz/.fzd file should be used:

St _geant _Maker* geant = new St _geant Maker(“geant”);
geant - >Set NWGEANT(10 000 000);

geant - >Set Debug() ;

geant - >Set | wt ype(1);

Tstring InFile("nylnputFile.fzd");

geant ->Set I nputFile(lnFile.Data());

chai n- >Set | nput (" geont', "geant : geom') ;

VVV VYV VYV

Then the StTrsMaker isinstantiated:
> StTrsMaker* trsM = new St Trshaker (“Trs”);

To writethe TRS output to afile, oneinvokes amethod of the maker with the file name and the number of
events as argument (the types taken by the constructor arechar * andi nt respectively):

> trsMk->witeFile("test.trs", Nevents);

The other makersthat will use StTrsMaker are instantiated after this. The chain member functionsinit(),
Make(), etc. are then invoked.

For the second case, the only thing needed is the StTrsMaker, and the input .trsfile:
> StTrsMaker* trsM = new St Trshaker (“Trs”);
> trsM->readFile("test.trs");

followed by the user’ s maker and the chain member functions.

http://www.star.bnl.gov/STAR/html/comp_l/simu/TpcRespSim/src/Welcome.html

Data File

The .trsfiles have a self-documenting header that can be easily read from the UNIX command prompt for
convenience:

rcf:~/workdir/trs> head test.trs

Tpc Response Simulator Data File

Created: Wd Nov 3 13:20:23 1999

version TrsDatavl. O

Qperating System HP-UX B.10.20 A

Nunber of events 1

Ceonetry Information ----

sectors 24

rows 45

pads 88 96 104 112 118 126 134 142 150 158 166 174 182 98 100 102 104
106 106 108 110 112 112 114 116 118 120 122 122 124 126 128 128 130 132
134 136 138 138 140 142 144 144 144 144

H##

HFHEIFHFHEHFHEHHR

Thisway, one can obtain the following information:
" Datethefilewas created
Version of thefileformats. Thisisuseful in selecting the appropriate Reader of thefile.
Operating system where the file was created
Number of eventsinthefile.
Geometry Db information with which the file was created. These parameters are read in from the file
so the Db does not need to be opened.
» Number of sectors,
> Number of rowsin each sector, and
» Number of padsin each row starting from the first row to the last.

Therest of thefileisin binary format and is machine-readable only. The size of acentral Venuseventis
~8MB in the current version. Once the StTrsMaker is done processing through either of these cases, the
event isloaded in memory. The accessis provided viatheinterface, and thisisidentical to DAQ.

Readers

The datais accessed through readers. Each detector provides a specific DetectorReader object, which
defines the type and number of readers (decoders) for adetector. Inthe case of TRS, only asingletypeis
currently provided — a ZeroSuppressedReader .

Through the DetectorReader, one gets the data via the ZeroSuppressedReader. The member functions are
defined via a base class to ensure uniformity in DAQ & Simulation chains. The Detector Reader will
control which version of the ZeroSuppressedReader is created, depending on the format of the event to be
processed. If the format of the datafiles evolve, thiswill become important. For TRS, theversionis
specified in the constructor of the STrsDetector Reader object. The version can be omitted in the
constructor, and by default it will take the latest one. It isimportant to stress that a user should only be
concerned with calling the right version in the constructor, the interface is guaranteed to be the same.

Thefirst step to accessthe dataisto get theSt _Dat aSet , and retrieve the pointer to the event data. This
pointer to the event datais then used as an argument when constructing the STrsDetectorReader (which
inherits from DetectorReader). Once the XTrsDetectorReader is defined, the data may be accessed
through the ZeroSuppressedReader. The other SectorReaders, specified in the Detector Reader base class,
are currently not implemented for the simulation data. These can be implemented if need arisesin the

future. The ZeroSuppressedReader is called for each sector, asin DAQ, and the data is accessed through
the methods of the ZeroSuppressedReader. InaMaker, thiswould ook like the following:

#i ncl ude “St TrsMaker /i ncl ude/ St Tr sDet ect or Reader . hh”
#i ncl ude “St TrsMaker /i ncl ude/ St Tr sZer oSuppr essedReader . hh”
Int_t StSonmeMaker:: Make() {
/1 CGet the TRS Event Data Set
St _ObjectSet* trsEventDataSet = (St_(bjectSet*) GetDataSet("Event");
/1l Get the pointer to the raw data.
St TpcRawDat aEvent * trsEvent = (St TpcRawDat aEvent *)
t rsEvent Dat aSet - >Get (hj ect () ;

/1 Instantiate the DetectorReader. Version will be default if not given
string version = “TrsDatavl. 0”";
St TrsDet ect or Reader* tdr = new St TrsDet ect or Reader (trsEvent, version);

/1 Exanpl e of how one gets the TRS data with ZeroSuppressedReader
for(int isector=1l; isector<=24; isector++) {
Zer oSuppr essedReader* zsr = tdr. get Zer oSuppr essedReader (i sector);
if(lzsr) continue;

/1 Ot herw se, decode it
unsi gned char* padLi st;
for(int irow=l; irow=45; irowt+) {
i nt nunber O Pads = zsr->get PadLi st (i row, &padList);

/1 1f there are no pads, go to the next row...
i f (! nunber O Pads) conti nue;
for(int ipad = 0; ipad<nunberCf Pads; ipad++) {

/1 Note that ipad is an index, NOT the pad nunber.

/1 The pad nunber cones from padLi st[i pad]

int nseq;

Sequence* |i st Of Sequences;

zsr - >get Sequences(i row,
static_cast<int>(padList[ipad]),
&nseq,
&l i st OF Sequences) ;

/1 One woul d do the data manipul ati on here!
/1 For this exanple, just print out the ADC val ues.
for(int kk=0; kk<nseq; kk++) {
for(int zz=0; zz<listO Sequences[kk].Length; zz++) {

cout << " " << kk
<< " " << 77z << "\ T
<<

static_cast<int>(*(listO Sequences[kk].FirstAdc)) << endl;

i stOf Sequences[kk] . Fi rst Adc++;
Y /] zz

} /1 Loop kk
} /1 loop over pads
} // Loop over rows
} /1 Loop over sectors
return kStCk; } // Make()

Additional Information

TRSisfoundin

$STAR/ St Root / St Tr sMaker /

The header filesareinthei ncl ude/ directory and sourcefilesinthesr ¢/ directory.

Note that in the previous example, STrsDetector Reader and SITrsZeroSuppressedReader are#i ncl uded.
Thesein turn automatically #i ncl ude the base class definitions for Detector Reader and
ZerouppressedReader . The definitions for Detector Reader, ZeroQuppressedReader, and Sequence are
located in

$STAR/ St Root / St DagLi b/ GENERI CJ/ Event Reader . hh
For questions about StDagL ib please contact Jeff Landgraf or Micheal LeVine.
Thisisawork in progress. For questions related to the StTrsMaker Reader objects, you can contact

Brian Lasiuk (lasiuk@star.physics.yae.edu) or
Manue Calderon de la Barca Sanchez (calderon@star.physics.yale.edu).

mailto:lasiuk@star.physics.yale.edu
mailto:calderon@star.physics.yale.edu

